
height of the vessel; To, initial temperature of the medium; Po, density at T = To; P, pres- 
sure; p, Boussinesq quasipressure; X = k/poCp, thermal-diffusivity coefficient; k, thermal- 
conductivity coefficient: v, kinematic viscosity coefficient; Cp, specific heat at constant 
pressure; B, heat expansion coefficient; g, gravitational acceleration; V = (Vx, Vy, 0), 
velocity vector; R, universal gas constant; ~, molecular weight; a, laser beam radius; ~, 
stream function; m, vortex; qRe = (~loaSBg)/(poCpV3), TRe = [Bg(T -- To)a3]/v 2, VRe = Va/v, 
dimensionless quantities with a as the length scale; Pr, Prandtl number; Ayv, AYT, displace- 
ment of maxima of velocity or temperature from beam axis; V*, T*, ~*, maximal values of ve- 
locity, temperature and stream function; r, ~, polar coordinates; V ~ T o , values on the 
ray axis, n, medium refraction index. 
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NONLINEAR STABILITY OF MOTION OF VISCOUS LIQUID BETWEEN 

CONCENTRIC ROTATING CYLINDERS 

E. A. Romashko UDC 532.527.2 

The nonlinear stage of the growth of perturbations in the hypercritical region is 
investigated in the case of a viscous liquid motion in the gap between two rotat- 
ing cylinders by using the balance method for perturbation energy. 

The stability problem of motion of a viscous liquid in the gap between two rotating cyl- 
inders has a special place in the theory of hydrodynamic stability. First, the instability 
of the rotatory Couette flow is one of the two original types of hydrodynamic instability 
presented by a simple kind of motion. Second, there are available extensive and sufficiently 
reliable experimental data for this problem; this is especially important when solving a non- 
linear problem since in this case the only test of the authenticity of the theoretical con ~ 
clusions is their agreement with the experimental results. 

The linear stability theory of liquid motion for the system under consideration is well 
known [i]. We shall not dwell on surveying the literature on this subject but shall only 
mention that in [2, 3] it was rigorously demonstrated that for suitably high Reynolds num- 
bers the Couette circular motion is unstable. In [4, 5] it was shown that in the linear 
theory, which is limiting in the sense of the ratio of the radii and the ratio of the cylinder 
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angular velocity approaching unity, the stability problem of convection arises in the hori- 
zontal liquid layer heated from below. In [6] the validity of this assertion was proved 
also for the nonlinear case and a rigorous motivation was provided for using the Lyapunov-- 
Schmidt method in the analysis of Taylor vertices. 

In the present article nonlinear growth of disturbances in the hypercritical region is 
analyzed. The interaction between the disturbances and the main flow is taken into account 
by using the energy-balance method for the disturbances described by Stewart in [7]; the 
basis for this method is the idea originally ascribed to Landau [8] to construct a differen- 
tial equation involving time for the amplitudes of finite disturbances whose solution ap- 
proaches asymptotically a constant limit in the hypercritical region. The finite disturbance, 
as in the Lyapunov-- Schmidt method, is given in the form of a product of time-dependent ampli- 
tude and a coordinate function which is of the same form as the first eigenvector for the 
corresponding linear problem. 

In [7] the differential equation for the amplitudes of finite disturbances as well as 
actual evaluations of the torque are carried out for the case of a small gap between the 
cylinders. In the present article this approach is extended to the case of arbitrary gap 
size between the cylinders. An attempt has also been made to include finite disturbances 
within the framework of the method which as regards coordinate dependence agree with the sec- 
ond or third eigenvector of the linear problem and remain within the range of suitably high 
Reynolds numbers. 

I. Balance Equation for Disturbance Energy 

The flow of a Viscous, incompressible fluid is now considered in the gap between two 
vertical cylinders with radii and rotation angular velocities given by R:, ~: and R2, ~2 
for the inner and outer cylinder, respectively. It is assumed on the basis of the known ex- 
perimental results that the arising small perturbations are periodic along the vertical z 
axis and that they possess circular symmetry (all the quantities are independent of the angu- 
lar coordinate q). 

The velocity V of the motion of fluid and the pressure p are represented as sums, 

v = V o ~ V ' ;  p = Po + P'; (1)  

v o =  {0, ~(r ,  0, 0}; v' = { u ' ,  v','W}, 

where Vo, Po are the velocity and pressure of the original motion averaged over the z axis, 
the motion being modified by finite fluctuating perturbations, and V' is the velocity of the 
finit~ amplitude disturbance whose components u', v', w' are functions of the coordinates r, 
z and of time t. A similar relation is also adopted for the pressure perturbation p'. Fol- 
lowing !7] one assumes that the average over z (bar on top) of the perturbations V', p' van- 

ishes (V' = p' = 0). 

The equations of motion for an incompressible and viscous fluid and for dimensionless 
quantities are now written as 

1 Ov 1 1 rot rotv, R---~" 0---/- -1- rot  v x v -}- -~- grad v 2 : - -  grad p - -  R---~ (2)  

div v : O. 

One adopts the values d = R~ -- R,, R,~,, d=/~, pR,~x as characteristic units for length, ve- 
locity, time, and pressure, respectively. The first equation in (2) has a suitable form for 
projecting it in any direction and, in particular, on the orthogonal axes of the cylindrical 
coordinate system (r, ~, z) with suitable velocity components (u, v, w). 

If into (2) one now substitutes (I) and one averages over z, then (sinc e V' = 0) the 
followingequation is obtained for the averaged motion: 

1 Ov o 1 ~ 1 rot rotvo" (3)  Re Ot + rot vo • ~ + rot v '  x v '  + grad (v~ + v" )  -- grad Po R--e 

The continuity equation for Vo is satisfied identically. 

The boundary conditions for (3)consist of the tangential component of the velocity v0 
of the averaged motion on the boundary of the cylinders equal to the corresponding linear ve- 
locities of the points of cylinder surfaces, namely, 

1232 



(r, t ) = l f o r  r = %  

(r, t ) = m ~  f ~  r = ~ .  

By inserting (i) into (2) and taking into account Eq. 
tions of motion for the perturbations 

(4) 

(3) one obtains a system of equa- 

1 O v '  
--.--+rotv'• o x v ' + r o t v ' x v ' - r o t v ' x v ' §  
Re Ot 

1 grad (v ' '  - - v " )  -[- grad (vov' - -  vow ) = - - 'grad p' 1 rot rot v' ,  (5)  
--Re 

div v'  = 0 

with vanishing boundary values for V f on the cylinder surfaces. 

The balance equation for the perturbation energy can be found, for example, in [7]. How- 
ever, it can be derived directly from Eq. (5) if one takes a scalar product of the latter 
with V' and then integrates it over the entire volume. By taking into account the axial sym- 
metry as well as the periodicity in z of the perturbations the integration over the volume 
reduces to the integration over the area of an axial section of the gap with the height along 
z equal to the wavelength X for a given perturbation, it can easily be seen that the third 
and the fourth components on the left are lost since they are scalar products of orthogonal 
vectors. All the components containing gradients also vanish in view of the vanishing bound- 
ary values of the velocity normal component since the volume integrals of these expressions 
can be transformed into surface integrals with the continuity equation taken into account. 
The integral of the expression (rot ~ , V '  also vanishes since the expression in the 
brackets is independent of z and the integration along z gives the mean value V' which van- 
ishes by definition. Transforming the remaining integrals one obtains the following balance 
equation for the perturbation energy: 

r2 h r~ ~ r~ 

a f f v '~" j y  ( 'O~~ V~ (6 )  
- -  r d r d z  = R e  ( - - u ' v ' )  k Or r 

a t  , 2 
r~ 0 r t 0 r 1 0 

(rotv,)r = 8 v '  (rotv')~ 8u' a~' (rotv ' ) ,  1 O(ro') _ _ _ _ ,  - -  ; ; 

#Z dz  Or r Or 

V ,~- = U ,z _~ o '~ .Jr_ w "~ . 

The term on the left of Eq. (6) represents the increase of the perturbation energy in 
the volume under consideration. The first teznn on the right is the integral of the product 
of the Reynolds stress by the velocity gradient of the averaged motion; it represents the en- 
ergy content transmitted from the averaged motion to the perturbations in a unit of time. 
The second integral on the ~ight represents the energy loss of the perturbations per unit of 
time due to dissipation. This term is always positive. If, due to the Reynolds stresses, 
the averaged motion changes in such a way that the energy losses of the perturbations are 
exactly compensated by the energy passing from the averaged motion to the perturbations then 
a steady secondary flow exists in these conditions. 

2. Linearized Problem 

For infinitely small perturbations the second-order terms in V' 
and linear equations of motion are obtained in the form 

in (5) can be ignored 

1 Ov' + rot v' • vo § rot % x v' - -  grad p' 1 1  rot rot v', 
Re Ol Re 

div v' = O. 

(7 )  

If one writes down the projections of Eq. (7) on the cylindrical coordinate axes, in- 
troduces the flow function in the (r, z) plane according to the relations 

1 a( r~ ' )  ; O(r , ' )  
U ~  , ~ r  __ 

r Oz r Or 
(8) 
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and eliminates the pressure, then one obtains for the functions ~', v' the following system 
of equations: 

z 1 dv' _ _ 1 ) 2 , ,  
~ -  + 2 Re v~ Oz 

do' ( Ooo vo ) d~'  ( l ) v," 
Ot Or r -~z --- V z - - ~  

( 9 )  

One analyzes now the solutions periodic in z and exponential in time, 

~ ' =  - -  exp (~t) sin (kz) ~ (r), v' = exp (~t) cos (kz~ v (r), 

and  using the expression for the velocity of the unperturbed motion, 

Vo Ao r + B o Ao 1 - -  I~rnZ r, (l - -  ~m 2} = - - - ;  : ; Be - , 
r r 1 (1 - -  m 2) tn 2 - -  1 

one obtains from (9) an eigenvalue problem for the eigenvalues 6: 

(10) 

(11) 

( L - - k Z ) ~ - - , p  --- O, 

(L - -  k z) ~ - -  G~ =: 2k Re ~ (r) v, (12)  

(L - -  k z) v - -  Gv = 2kAo , ,  r (r) --: A o ! B~ 
r 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  f u n c t i o n s  ~ ,  v g i v e n  b y  

v - - - ~ - -  ~ - 0  for r = r  i, r e . 
Or 

To s o l v e  t h e  l a t t e r  p r o b l e m  t h e  n u m e r i c a l  m e t h o d  a s  d e s c r i b e d  i n  [10]  i s  u s e d  t o  f i n d  
t h e  f i r s t  t h r e e  e i g e n v a l u e s  o i ( i  = 1 ,  2 ,  3) and  t h e  c o r r e s p o n d i n g  e i g e n v e c t o r s  ( ~ i ,  ~ i ,  v i ) "  

. Torque 

The averaged equation (3) of motion projected on the cylindrical coordinate axes can be 

m 

~.1 0 (ru") - -  = - - - -  + v "  Op o 
r Or r Or 

0~0 Re 0 O ( 1  0 ( rv0) )  
Ol ~- r z dr (rZu'v')------~- , r Or ' 

I D  
~ .  ~---- ( r u ' w ' )  = - -  
r Or Oz 

written as 

( 1 3 )  

The first equation of (13) determines the radial pressure gradient necessary to equalize 
the centrifugal force (the second term on the left) and the Reynolds stress. In a similar 
manner the third equation determines the axial pressure gradient which in our case vanishes 
since within the framework of the adopted assumptions as regards the coordinate dependence of 
the finite perturbations the averaged-over-z value u-~-- 0, as will be seen from our further 
considerat ions. 

The second equation of (13) gives the velocity component vo of the averaged motion 
against the Reynolds stress. The time dependence of vo must be maintained in the general 
case since with the perturbation energy growing or fading the averaged motion also varies in 
accordance with the law of the energy conservation (6). For steady averaged motion (Bvo/ 
8t = 0) provided the quantity u'v' is a known function of the coordinates one can write the 
solution of the second equation in (13) as follows: 

Vo Ar  + B u' v" 
= - -  ~- Re r dr, 

r r 
r l  

(1~)  

i :  u' v---~' i: u'v' mZr~ A =: A o - -  b Re dr; B := B o -i- b Re - - - -  dr; b -- - -  , 
r . r m z -  1 

f l  r t  

where Ao, Bo are given by the relations (ii). 
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~q~e relevant experimental results which were analyzed in [9] are consistent with the 
concept of dynamic equilibrium in the hypercritical domain of averaged motion and finite- 
amplitude perturbations. T~e approximate method for evaluating this equilibrium state con- 
sists of the following: 

It is assumed that the time variation of the velocity of the averaged motion vo in Eq. 
(13) can be ignored; for low eigenvalues ~, and for short times the latter follows directly 
from the linear stability theory. It is considered that this condition also holds for longer 
times, which is confirmed by the experiments on steady equilibrium motions in the hypercriti- 
cal domain. In this case the tangential stress function in the balance equation (6) can be 
determined from the relation (14). 

It is also assumed that the spatial distribution of the perturbation velocity is given 
in accordance with the linear theory; then the velocity components are expressed by the re- 
lations (8) and (i0) in which the exponent is replaced by a finite amplitude a,(t) which is 
time dependent. Substituting these relations into Eqs. (6) for the energy balance and trans- 
forming the integrals thus derived by using the linear equations (12) one obtains for the 
square a~(t) of the finite amplitude of disturbance the equation 

dt -- 2~a~ (t) + ~ - ( -  k L (Re - -  Re,) a~ (t) - -  271 - el~e~ai (t). (15) 

In the above Rex is the Reynolds number for which one evaluates the eigenvalue ox and the 
corresponding eigenvector-function (~I, @x, vx) of the problem (12) whose components are used 
in evaluating the integrals 

r2 r~ f2 

?, = - ~  ( v i - -  %~l) rdr; % = �9 - dr; 61 = v i ~ r d r .  (16) 
r 

rl rl r! 

The nonlinear equation (15) possesses a solution which for t § ~ approaches the time- 
independent limit given by 

a~ 46tg, 4Bo% (Re - -  Re1) 
= . ,  . ,~ , } (17) 

If Rex is the Reynolds number for neutral perturbations with a given wave number k, (in 
particular, these numbers can be equal to their critical values, k~, Re~), then in this case 
one has ~I = 0 and the square of the equilibrium amplitude ~ is determined only by the sec- 
ond term of (17) depending linearly on the difference Re -- Rex. However, if the coefficients 
(16) are determined by means of the components of the first eigenvector for a given k, and 
for the current value of Re, then the second term in (17) vanishes in view of Re, = Re and 
the square of the equilibrium amplitude can be determined only by means of the first term 
proportional to the eigenvalue ~I. In the latter case for nonlinearity to be taken into ac- 
count the approach is more indirect since it is possible to consider all the feasible modifi- 
cations of integrals in (16) for various values of Re. However, the computations have shown 
that the results of both variants differ only insignificantly. It is more convenient in 
practice to use in the computations only the second term for the square (17) of the equilib- 
rium amplitude, having determined the coefficients in (16) only once, for example, for the 
critical values k~, Re~ of the parameters. 

The mean torque transmitted to the rotating fluid by means of friction on the outer 
cylinder of given length h is determined by the relation 

G =  2aR~h~(  d~~ v~ r=r, Q1Rld (18) 

The tangential stress is now determined from the formula (14) and the result is substi- 
tuted into (18); this yields 

G, = C Re 2 { 2B~ ~) \ R e  + b k l % a l  ,_ C=2nhpv  z. (19)  

The first term of the right-hand side in the formula (19) characterizes the torque of 
the tangential stresses of the laminar flow by ignoring the perturbations; the second term 
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Fig. 1. Torque G in g.cm2/sec 2 against Reynolds number: i) 
theoretical curve of unperturbed laminar motion; 2, 3, 4) com- 
puted curves obtained by successively taking into account the 
effect of one, two, or three perturbation modes on the aver- 
aged motion with the Reynolds number passing through the value 
of the first, the second, and the third critical number, re- 
spectively, designated in the diagram as the coordinates a~, 
a2, as. For a: R, = I cm; R2 = 2 cm; h = 5 cm; O = 0.8404 g/ 
cmS; y = 0.1226 cm2/sec; k~ = 3.16; k~ = 5.38; k~ = 7.0; a = 
4~SdSR~/07 = 3125.5 cmS; experimental points according to Don- 
nelly ([9], Table 2). For b: R, = 1.9 cm; Rs = 2 cm; h = 5 
cm; 9 = 5.796.10 -s cm2/sec; O = 1.585 g/cmS; k~ = 3.13; k~ = 
5.3; k~ = 7.0; ~ = 26,766 cmS; experimental points according 
to Donnelly ([9], Table I). For c: R, = 3.94 cm; ~2 = 4.05 cm; 
h = 84.4 cm; ~ = 0.131 cm~/sec; O = 1.171 g/cmS; k~ = 3.14; 
k~ = 5.3; k~ = 7.0; ~ = 369.01 cmb; experimental points ac- 
cording to Taylor ([9], Fig. 2). 

represents the averaged supplement to the torque which is due to steady perturbations of 
finite amplitude. 

Numerical computations for the steady outer cylinder using the formula (19) were car- 
ried out for three cases in conformity with the experimental measurements given in [9]. The 
results are shown in the diagram (curves 2). One can see that there is a good agreement be- 
tween the solution and the experimental points in the first hypercritical domain (Re~ Red 
Re~) for all three cases with various ratios of the cylinder radii. It is recalled that by 
Re~ (i = i, 2, 3 .... ) one understands a number of critical values for the Reynolds numbers 
determined from the first, the second, the third, etc., elgenvectors, respectively, of the 
corresponding linear problem (12). It can also be seen from the diagram that the deviation 
of the theoretical curves from the experimental points occurs exactly at the passing of the 
Reynolds number through the second critical value Re~ and grows with the increasing Reynolds 
number. It can be assumed therefore that for Re > Re~ (in this domain already the second 
moment ~2 > 0, in accordance with the linear theory) the equilibrium state is established 
for which the energy transmitted from the averaged motion to the perturbations is divided 
between two disturbance modes corresponding coordlnatewise to the first or the second eigen- 
vector of the linear problem (12). An approximate evaluation of the equilibrium amplitudes 
for the two disturbance modes can be accomplished by using the following procedure. 
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A perturbation in the Reynolds numbers domain Re~ S Re ~ Re~ is now written as a sum 
of two perturbations,,v' =vl + v~ (this also applies if only one perturbation mode is con- 

! ! 
sidered), and it is assumed that the coordinate form of two perturbation modes v,, v2 is de- 
termined by the first eigenvector v: and the second eigenvector va, respectively, for the 
linear problem (12), namely, 

v' = a~ (t) v~ + az (0 v2, 

where the amplitudes of these two modes of finite perturbations ax and a2 are to be deter- 
mined. 

It is now assumed that the type of growth of each of the two perturbation modes is spec- 
ified by its interaction with the average motion relative only to a specified perturbation 
mode irrespective of the existence of the other mode. Under this assumption the balance 
equation for the perturbation energy can be applied for each mode separately. One then ob- 
tains Eq. (15) for the square of the amplitude of the first mode and a similar equation for 
the square of the amplitude a 2 a(t) for the second mode; in the latter case one has to replace 
the subscript i everywhere by 2, which indicates that one employs the components of the second 
eigenvector of the problem (12) to determine the former by using the formulas (16). 

In this case the formula (18) for the torque is transformed into 

G' = C Re~ [ 2B~ ] 
" Re  ~ b (kiala ~ + kzaza~) ( 2 0 )  

if the velocity of the averaged motion is obtained from the relation (14) and one takes into 
account the two perturbation modes. 

In a similar manner the additional contribution to the mean torque is taken into account~ 
in the third perturbation mode; the latter may exist in the third hypercritical domain for 
Re > Re~ [where the third eigenvalue of the problem (12) is also positive, ~ > 0]. The co- 
ordinate relation for this perturbation mode is assumed to be equal to the third eigenvector 
of the problem (12). The formula for the mean torque differs in this case from (20) by an 
additional term k~a3a~ in the parentheses on the right. 

= (i = I, 2 3) of the equilibrium ampli- In evaluating the torque (20), the squares a i 
tudes were determined using the second term of the formula (17) for the coefficients ~i, 8i 
(i = I, 2, 3) which, in turn, were determined by using the components of the corresponding 
eigenvectors of the linear problem (12) for the critical values k~, Re~ (i = i, 2, 3). 

The results of the computations are shown in Fig. i. Curve ! is the linear charac- 
teristic of the laminar motion, 2, 3, and 4 are the computed curves obtained by taking suc- 
cessively into account the interactions with the averaged motion of one, two, or three per- 
turbation modes, respectively. 

NOTATION 

R~, Ra and Ox, ~2, radii and angular velocities of inner and outer rotating cylinders, 
respectively; d = R2 -- RI, the gap width between cylinders; r i = Ri/d (i = i, 2), dimension- 
less cylinder radii; p, ~, ~, density, coefficients of kinematic and dynamic viscosity, re- 
specitive!y; h, cylinder length; Re = dRxO1 ~, Reynolds number; Re~ (i = i, 2, 3), critical 
Reynolds numbers; G, torque; ki, wave numbers; oi, eigenvalues of linear problem (i =i, 2, 3); 

0 ~ I 0 d ~ d ~ 1 d 1 
Or ~ v . ~  + ~z~ ; L . . . . . . . . .  m RJR1; ~ Q2/fl~. r - -dr  ~ r dr r ~; = = 

l, 

2. 

3. 

, 

5. 

. 

LITERATURE CITED 

C. C. Lin, Hydrodynamic Stability, Cambridge University Press. 
A. L. Krylov, "Proof of instability of a viscous flow of incompressible liquid," Dokl. 
Akad. Nauk SSSR, !53, ~ No. 4 (1963). 
V. I. Yudovich, "Secondary flows and liquid instability between rotating cylinders," 
Prikl. Mat. Mekh., 30, No. 4 (1966). 
V. I. Yudovieh~ "Free convection and branching," Prikl. Mat. Mekh., 31, No. 1 (1967). 
S. N. Ovchinnikova and V. I. Yudovich, "Evaluation of secondary stationary flow between 
rotating cylinders," Prikl. Mat. Mekh., 32, No. 5 (1968). 
S. N. Ovchinnikova and V. I. Yudovich, "Stability and bifurcation of Couette flow in the 
case of narrow gap between rotating cylinders," Prikl. Mat. Mekh., 38, No. 6 (1974). 

1237 



7. J. T. Stewart, in: Mechanics [Russian translation], No. 3(55), IL (1959), p. 19. 
8. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], GITTL, 

GITTL, Moscow (1954). 
9. R. J. Donnelly and N. J. Simon, J. Fluid Mech., ~, 401-418 (1960). 

i0. E. A. Romashko, "Stability of secondary Taylor flow between rotating cylinders with 
wide gap between them," Inzh.-Fiz. Zh., 25, No. i (1973). 

METHOD OF FINITE ELEMENTS FOR SOLVING SOME 

HEAT-CONDUCTION PROBLEMS 

Jana Budacova UDC 536.24.02 

Heat-conductlon problems are investigated with the aid of a new variational method, 
namely, the method of finite elements (MFE). 

Heat processes in constructions or in mechanical equipment with high-temperature gradi- 
ents are at present studied in a number of investigations. For a theoretical solution of the 
problems thus arising one can employ, in principle, either analytic or numerical methods. 
The classical analytic methods, including the methods based on integral transformations, can 
produce satisfactory solutions for simple physical models; their use, however, in involved 
problems, in practice, is rather doubtful. The numerical methods employed until recently were 
almost exclusively based on the method of finite differences. Variational methods have at 
present found wide application (in particular, the MFE), since the use of the latter results 
in matrix equations suitable for processing on digital computers. 

The main concept of the MFE consists in subdividing the entire solution domain into a 
set of a finite number of elements, the links between adjacent elements being provided in a 
finite number only of the so-called points of contact. The continuous solution of the origi- 
nai-problem in the old domain (for heat conduction the latter is the temperature field) is 
replaced by a piecewise polynomial one with values specified in advance at the nodes of the 
complex. Since these values are the same for adjacent elements therefore continuity of the 
solution is attained in the entire domain under investigation. Some of the main advantages 
of the MFE are the ease of satisfying any boundary conditions for bodies of quite different 
shapes including holes and complicated boundaries and also that any inhomogeneities or aniso- 
tropycan be taken into account, and finally that one can solve nonlinear problems with the 
aid of various iteration procedures. 

The unsteady heat-conduction equation can be written as follows: 
N 

t, " t, + t, o -o, (1) 

where 0 = ~e/~t with the boundary and initial conditions 

oo + ~ (x, t, o ) ( o -  %)IA~ = 0, 0 (X, 0) = 0 ~ (X), -~n (2)  

0IA0--  OA (x, t), O0 -~n + qp (x, t, O)lAq = o, 

where A = A 0UAqUA a is the boundary of the domain a under investigation; B0/~n is the nor- 
mal derivative to the surface and a is the heat-emission coefficient. Of the variational 
methods employed in heat problems the Galerkin method is the onemost often used [i]. One 
considers the basic space of the functions @ such that 

~6H and; r o = O, 
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